
Two Constructions of Quaternary Legendre Pairs of Even Length

Jonathan Jedwab and Thomas Pender

Department of Mathematics, Simon Fraser University, Burnaby BC V5A 1S6, Canada
jed@sfu.ca, tsp7@sfu.ca

15 August 2024

Abstract. We give the first general constructions of even length quaternary Legendre pairs: there
is a quaternary Legendre pair of length (q−1)/2 for every prime power q congruent to 1 modulo 4,
and there is a quaternary Legendre pair of length 2p for every odd prime p for which 2p − 1 is a
prime power.

Keywords. Legendre pairs; quaternary Legendre pairs; Goethals–Seidel sequences; Hadamard
matrices.
MSC 05B20, 05B30.

1. Introduction

The study of binary Legendre pairs has attracted renewed interest owing to recent theoretical and com-
putational advances [10, 12, 23]. These objects were first systematically studied by Szekeres [21, 22]
and Whiteman [26] via the {+1, −1} characteristic vectors of certain subsets of a cyclic group. Much
of the motivation for studying binary Legendre pairs is because they can be used to construct binary
Hadamard matrices and pairs of amicable Hadamard matrices [18, 19]. Several constructions of infinite
families of binary Legendre pairs are known [5, 7, 16, 21, 22, 26].

Quaternary Legendre pairs were recently introduced by Kotsireas and Winterhof [11], and further
studied by Kotsireas et al. [13], as a natural generalization of the binary case. These authors demon-
strated that, analogously to the binary setting, quaternary Legendre pairs can be used to construct qua-
ternary Hadamard matrices. Although they were not able to construct an infinite family of quaternary
Legendre pairs of even length, they made the following conjecture based on numerical evidence.

CONJECTURE 1 (Kotsireas and Winterhof [11]). There exists a quaternary Legendre pair of even
length 2N for every N ≧ 1.

We shall prove the following two results.

THEOREM 2. Let q be an odd prime power.

(i) (Szekeres [21]). If q ≡ 3 (mod 4) then there exists a binary Legendre pair of length (q − 1)/2.

(ii) If q ≡ 1 (mod 4) then there exists a quaternary Legendre pair (a, b) of length (q− 1)/2 for which
a has only one imaginary element and b is binary.

THEOREM 3. Suppose p is an odd prime for which 2p − 1 is a prime power. Then there exists a
quaternary Legendre pair (a, b) of length 2p for which b is binary.

Theorem 2 (ii) provides the first known construction of quaternary Legendre pairs for infinitely many
even lengths. Theorem 3 does not necessarily provide quaternary Legendre pairs for infinitely many even
lengths because, to our knowledge, it is an open question as to whether there are infinitely many primes
p for which 2p− 1 is a prime power. (The number of such primes p that are at most 102, 103, 104, 105,
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106, 107, 108 is 12, 42, 205, 1190, 7802, 56267, 423770. The following heuristic argument suggests that
one might expect the stronger result that there are infinitely many primes p for which 2p − 1 is prime:
by the Prime Number Theorem, the “probability” that an integer n is prime is approximately 1/ log n;
assuming independence, the “probability” that integers n and 2n − 1 are both prime is approximately
1/(log n)2, and

∑
1/(log n)2 diverges.)

Prior to this paper, the smallest unresolved case of Conjecture 1 was length 36 [11, 13]. In view of
Theorems 2 and 3, the unresolved cases of Conjecture 1 of length at most 100 are now

42, 46, 52, 58, 64, 66, 70, 72, 76, 80, 88, 92, 94, 100.

The remainder of this paper is organized in the following way. Section 2 presents preliminary def-
initions and results, and Sections 3 and 4 describe the constructions establishing Theorems 2 and 3.
Section 5 updates the unresolved cases of Conjecture 1 of length at most 100.

2. Background

Quadratic Character of GF(q)

Let q be an odd prime power. Our constructions make use of the multiplicative function χ over GF(q)
defined by

χ(α) =


0 for α = 0,

1 for α a nonzero square in GF(q),
−1 for α a non-square in GF(q).

(1)

In other words, χ is the extended quadratic character of GF(q).
We shall use the following well-known properties of the function χ.

PROPOSITION 4. Let q be an odd prime power. Then

(i) ([15, Rem. 1.4.53].)
∑

h∈GF(q) χ(h) = 0

(ii) ([15, Lem. 6.4.7]).
∑

h∈GF(q) χ(h)χ(h+ d) = −1 for fixed nonzero d ∈ GF(q)

(iii) ([15, Prop. 1.2.23]). χ(−1) = (−1)(q−1)/2.

Sequences and their Correlations

Write i for the principal root of −1, and let j = −i. A sequence a = (ak) of length N is an
N -tuple (a0, a1, . . . , aN−1) of complex numbers. The sequence a is quaternary if each ak lies in
{+1, i, −1, j}, it is binary if each ak lies in {+1, −1}, and it is ternary if each ak lies in {+1, 0, −1}.

Let a = (ak) and b = (bk) be sequences of length N . The periodic cross-correlations of a by b are
defined as

Ra,b(u) =
N−1∑
k=0

akbk+u for u = 0, 1, . . . , N − 1,

where the index k+u is calculated modulo N . The periodic autocorrelations of a single sequence a are
defined as Ra(u) ≡ Ra,a(u).

A pair (a, b) of sequences is complementary if

Ra(u) +Rb(u) = 0 for all u ̸= 0.

A pair (a, b) of quaternary sequences is a Legendre pair if

Ra(u) +Rb(u) = −2 for all u ̸= 0.
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EXAMPLE 5. The length 10 sequences

a = ( i − j i +++ i j−),

b = (−−++−+−++−)

are easily verified to form a quaternary Legendre pair.

Two pairs of binary sequences (w, x) and (y, z) (all four sequences having the same length) form
an amicable set if

Rw,x(u) +Ry,z(u) = Rx,w(u) +Rz,y(u) for all u ̸= 0. (2)

A length N binary sequence (a0, a1, . . . , aN−1) is symmetric if

ak = aN−k for all k ̸= 0.

OBSERVATION 6. Suppose w and x are length N symmetric binary sequences. Then

Rw,x(u) = Rx,w(u) for all u = 0, 1, . . . , N − 1.

In Section 4, we will apply the Gray map to relate quaternary sequences to binary sequences. Recall
the usual Gray map {+1, i, −1, j} → {+1, −1} × {+1, −1} is defined by

+1 7→ (+1, +1),

i 7→ (+1, −1),

−1 7→ (−1, −1),

j 7→ (−1, +1).

Given binary sequences w and x of length N , define G (w, x) to be the length N quaternary sequence

1

2
(1 + i)w +

1

2
(1 + j)x, (3)

whose elementwise image under the Gray map is (w, x). Krone and Sarwate [14] observed that a simple
calculation yields

RG (w,x)(u) =
1

2

(
Rw(u) +Rx(u)

)
+

i

2

(
Rw,x(u)−Rx,w(u)

)
for all u ̸= 0. (4)

REMARK. (i) Fletcher et al. [5] showed that a binary Legendre pair ((ak), (bk)) must have odd
length and that it can be assumed that

∑
ak =

∑
bk = 1. It is (implicitly) conjectured in many papers

that a binary Legendre pair exists for every odd length. The smallest open case is currently length
115 [12].

(ii) Kotsireas and Winterhof [11] showed that, in contrast to the binary case, a quaternary Legendre
pair of even length can exist. It is therefore particularly interesting to construct even length quaternary
Legendre pairs; for such pairs, we may assume that

∑
ak = 1+ i and

∑
bk = 0 [11, Lemma 2.1]. Prior

to this paper, the smallest open case of Conjecture 1 was length 36 [11, 13].

Hadamard Matrices

A quaternary Hadamard matrix H of order N is an N × N matrix with entries in {+1, i, −1, j}
such that HH∗ = NI . If the entries of H are further restricted to {+1, −1}, then the Hadamard
matrix H is binary (often referred to simply as real). It is well-known [8, sec. 14.1] that the order of a
binary Hadamard matrix is 1, 2, or a multiple of 4. Paley [17] conjectured in 1933 that there is a binary
Hadamard matrix of every order divisible by 4. Since 2005, the smallest unresolved order is 668 [9].
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There are many constructions of Hadamard matrices; one of the most productive uses complementary
sequences.

Turyn [24] showed that if there is a quaternary Hadamard matrix of order M , then there is a binary
Hadamard matrix of order 2M and so M = 1 or M is even. Furthermore, Turyn conjectured that there
is a quaternary Hadamard matrix of every even order. Since 1993, it appears that the smallest unresolved
order is 94 [4] (as quoted in [11]).

Suppose that Conjecture 1 is true. We briefly review how this would imply that both Turyn’s con-
jecture on quaternary Hadamard matrices and Paley’s conjecture on binary Hadamard matrices are true.
Kotsireas and Winterhof [11] showed that if there is a quaternary Legendre pair of length M , then there
is a quaternary Hadamard matrix of order 2M + 2. It would follow that there is a quaternary Hadamard
matrix of order 2(2N) + 2 = 2(2N + 1) for every N ≧ 0 (where the case N = 0 holds trivially). Now
Turyn [24] also showed that if H is a quaternary Hadamard matrix of order M , then

(
+ +
+ −

)
⊗ H is a

quaternary Hadamard matrix of order 2M . We would therefore obtain a quaternary Hadamard matrix of
order 2r(2N +1) for every r ≧ 1 and every N ≧ 0, proving Turyn’s conjecture. This in turn would im-
ply (by Turyn’s first construction above) that there is a binary Hadamard matrix of order 2r+1(2N + 1)
for every r ≧ 1 and every N ≧ 0, proving Paley’s conjecture.

3. The First Construction

Proof of Theorem 2

Let q be an odd prime power. Theorem 2(i) asserts the existence of a binary Legendre pair of odd
length (q − 1)/2. This result is due to Szekeres [21], who constructed such pairs using cyclotomy.
However, an earlier result due to Goethals and Seidel [6, Sect. 2] constructs a pair of ternary sequences
of length (q − 1)/2, containing only a single zero element, whose nontrivial periodic autocorrelations
sum to −2. We shall show that when q ≡ 3 (mod 4) is odd, replacing the single zero element by 1 gives
a binary Legendre pair of odd length (q − 1)/2 and so recovers Theorem 2(i); but when q ≡ 1 (mod 4),
replacing the single zero element by i gives a quaternary Legendre pair of even length (q − 1)/2 and
proves Theorem 2(ii). Whereas the construction given in [6] relies on results due to Paley [17] and the
geometry of finite projective planes, we now give a simple, direct, and self-contained proof of both parts
of Theorem 2 that does not require geometric arguments.

Let g be a primitive element of GF(q), and define length (q−1)/2 sequences a = (ak) and b = (bk)
by

ak =


1 for k = 0 and q ≡ 3 (mod 4),
i for k = 0 and q ≡ 1 (mod 4),
χ(g2k − 1) for 0 < k < (q − 1)/2,

bk = χ(g2k+1 − 1) for 0 ≦ k < (q − 1)/2

where the function χ is given in (1). Then b is a binary sequence; and a is a binary sequence if q ≡
3 (mod 4), and has only the imaginary element a0 = i if q ≡ 1 (mod 4). It remains to show that (a, b) is
a Legendre pair.

Fix u ∈ {1, 2, . . . , (q − 3)/2}. Then

Ra(u) +Rb(u) =

(q−3)/2∑
k=0

(akak+u + bkbk+u)

= a0au + a(q−1)/2−ua0 +

(q−3)/2∑
k=1

k ̸=(q−1)/2−u

akak+u +

(q−3)/2∑
k=0

bkbk+u. (5)
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We next show that a0au + a(q−1)/2−ua0 = 0. By Proposition 4(iii) we have

a(q−1)/2−u = χ(g−2u − 1) = χ((−1)(g−u)2(g2u − 1)) = (−1)(q−1)/2χ(g2u − 1) = (−1)(q−1)/2au,

and so

a0au + a(q−1)/2−ua0 =

{
au − au for q ≡ 3 (mod 4),
iau + aui for q ≡ 1 (mod 4).

= 0,

as claimed.
Substitute in (5) to give

Ra(u) +Rb(u) =

(q−3)/2∑
k=1

k ̸=(q−1)/2−u

χ(g2k − 1)χ(g2k+2u − 1) +

(q−3)/2∑
k=0

χ(g2k+1 − 1)χ(g2k+2u+1 − 1)

=

q−2∑
m=1

m ̸=q−1−2u

χ(gm − 1)χ(gm+2u − 1)

=

q−2∑
m=0

χ(gm − 1)χ(gm+2u − 1)

because χ(0) = 0. Replace gm − 1 by h and write gm+2u − 1 as g2u(h+ 1− g−2u) so that

Ra(u) +Rb(u) =
∑

h∈GF(q)
h̸=−1

χ(h)χ(h+ 1− g−2u).

Then by Proposition 4(ii) we obtain

Ra(u) +Rb(u) = −1− χ(−1)χ(−g−2u) = −1− χ
(
(g−u)2

)
= −2,

as required. This completes the proof of Theorem 2.
Table 1 lists examples of even length quaternary Legendre pairs of length at most 40 obtained from

Theorem 2(ii).

TABLE 1 . Quaternary Legendre pairs of even length N ≤ 40 from Theorem 2(ii)

N Sequence Pair

2 ( i−)
(−+)

4 ( i −+−)
(+−−+)

6 ( i +−−−+)
(−+−−++)

8 ( i +−−+−−+)
(−+++−+−−)

12 ( i −++−−+−−++−)
(+−+−−−−++++−)
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Continuation of Table 1

N Sequence Pair

14 ( i −−++−+−+−++−−)
(−++−−−−+−++++−)

18 ( i +−++−+−−−−−+−++−+)
(−++−+++−−−+++−−−+−)

20 ( i −−−++−+−+++−+−++−−−)
(−++−−+−++++−−−−+−++−)

24 ( i +−−+−+++−−−+−−−+++−+−−+)
(+−+−−+++++−++−−+−−−−−++−)

26 ( i −++++−+−−−+−−−+−−−+−++++−)
(−++−−−−++−++−+−+−−+−−++++−)

30 ( i ++−−+−−−−+++−+−+−+++−−−−+−−++)
(−+−−+−+−−−−−++−−++−−+++++−+−++)

36 ( i +−++++−+−−−−−++−−+−−++−−−−−+−++++−+)
(−+−−−+−−−+++−−+−++−+−−+−++−−−+++−+++)

40 ( i −−−++−+−−+++−−+−+−+++−+−+−−+++−−+−++−−−)
(+−−−+−−−−−−+++−+−−+−−++−++−+−−−++++++−++)

4. The Second Construction

Overview of Proof of Theorem 3

The principal insight in the derivation of Theorem 3 is to apply the Gray map in order to reason about
binary sequences. We begin by noting that combination of (4) with the definition (2) gives the following
result.

PROPOSITION 7. Let w, x, y, and z be binary sequences of the same length. Then
(
G (w, x), G (y, z)

)
is a quaternary Legendre pair if and only if (w, x) and (y, z) are an amicable set and

Rw(u) +Rx(u) +Ry(u) +Rz(u) = −4 for all u ̸= 0. (6)

EXAMPLE 8. Let

w = (+−−+++++−−),

x = (−−+−+++−+−),

y = (−−++−+−++−),

z = (−−++−+−++−).

Then G (w, x) and G (y, z) are the quaternary sequences (a, b) of Example 5. We may verify Proposi-
tion 7 by checking directly that (w, x) and (y, z) are an amicable set and satisfy (6).

We shall use the following two propositions to construct binary sequences w, x, y, and z with the
properties specified in Proposition 7, and thereby prove Theorem 3.

PROPOSITION 9. Suppose p is an odd prime for which 2p − 1 is a prime power. Then there exist
symmetric binary sequences w and x of length 2p such that

Rw(u) +Rx(u) =

{
4− 4p for u = p,
0 for u /∈ {0, p}.

(7)
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PROPOSITION 10. Let p be an odd prime. Then there exists a binary sequence y of length 2p such
that

Ry(u) =

{
2p− 4 for u = p,
−2 for u /∈ {0, p}.

(8)

We can now prove Theorem 3 in the following way. Suppose p is an odd prime for which 2p− 1 is
a prime power. Let w and x be the length 2p symmetric binary sequences constructed in Proposition 9,
and let y be the length 2p binary sequence constructed in Proposition 10. Since w and x are symmetric,
Observation 6 gives that (w, x) and (y, y) form an amicable set. Furthermore, (7) and (8) imply that (6)
is satisfied. It follows by Proposition 7 that

(
G (w, x), G (y, y)

)
, which is equal to(

G (w, x), y
)
, (9)

is the required quaternary Legendre pair of length 2p.
Our remaining task is to prove Propositions 9 and 10. In order to prove Proposition 9, we require a

construction found in Goethals and Seidel [6, Sect. 2]. The properties of this construction were stated
although not fully derived in [6], and the proof given there relies on results due to Paley [17]. We shall
give a detailed, direct, and self-contained proof of this result.

REMARK. Binary sequences having the properties specified in Propositions 9 and 10 were con-
structed by Whiteman in [27] and [28], respectively, although his proof for Proposition 9 was difficult
and rather opaque. Here, we prove both propositions by entirely elementary means.

Goethals–Seidel Sequences

Throughout this subsection, let q be a prime power where q ≡ 1 (mod 4). We shall use the following
result to prove Proposition 9.

RESULT 11 (Goethals and Seidel [6, Sect. 2]). There exists a pair of symmetric complementary
ternary sequences

(
(ak), (bk)

)
of length (1+q)/2 for which the only zero element of the two sequences

is a0.

First, we describe how to construct the ternary sequences (ak) and (bk). Then we show they are sym-
metric and complementary.

Regard the quadratic extension GF(q2) as a 2-dimensional vector space over GF(q), and let g be a
primitive element of GF(q2). Then {1, g} is a basis for the vector space and we may represent its q2

elements as length 2 column vectors over GF(q) with respect to this basis.
Consider the two commuting, invertible linear maps whose matrix forms with respect to the chosen

basis {1, g} are given by

V =
1

2

(
gq−1 + g1−q g

1
2
(1+q)(gq−1 − g1−q)

g−
1
2
(1+q)(gq−1 − g1−q) gq−1 + g1−q

)
, W =

(
0 g1+q

1 0

)
.

Note that gq−1 + g1−q and g±
1
2
(1+q)(gq−1 − g1−q) and g1+q are each elements of the base field GF(q)

because they are roots of the defining polynomial tq − t. Then by induction on k ≧ 1 we find that, for
all integers k,

V k =
1

2

(
gk(q−1) + gk(1−q) g

1
2
(1+q)(gk(q−1) − gk(1−q))

g−
1
2
(1+q)(gk(q−1) − gk(1−q)) gk(q−1) + gk(1−q)

)
(10)

and so

V kW =
1

2

(
g

1
2
(1+q)(gk(q−1) − gk(1−q)) g1+q(gk(q−1) + gk(1−q))

gk(q−1) + gk(1−q) g
1
2
(1+q)(gk(q−1) − gk(1−q))

)
. (11)
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Solving the characteristic equation for V shows that its eigenvalues are gq−1 and g1−q. The smallest
power of each of these eigenvalues that lies in the base field is (1 + q)/2. Similar calculation shows
that the eigenvalues of W are ±g

1
2
(1+q), both of whose squares lie in the base field. Furthermore, the

eigenvalues of V kW for k = 0, 1, . . . , (q − 1)/2 are g
1
2
(1+q)gk(q−1) and −g

1
2
(1+q)gk(1−q), both of

which are not in the base field because q ≡ 1 (mod 4). Set x = ( 10 ) , and consider the set

{x, V x, . . . , V
q−1
2 x, Wx, V Wx, . . . , V

q−1
2 Wx} (12)

of 1 + q vectors, each of which is nonzero because V and W are invertible. No two vectors of this set
are scalar multiples of each other, otherwise (because V and W commute, and V (1+q)/2 = −I from
(10)) we would obtain the contradiction that (V k − cI)x = 0 or (V kW − cI)x = 0 for some scalar c
and some k ∈ {0, 1, . . . , (q − 1)/2}.

Writing the matrix whose columns are c1 and c2 as (c1, c2), we define the sequences (ak) and (bk)
of length (1 + q)/2 by

ak = χ det(x, V kx) and bk = χ det(x, V kWx) for k = 0, 1 . . . , (q − 1)/2, (13)

where the function χ is given in (1). Since V
1+q
2 = −I and gk(q−1) + gk(1−q) = g−k(q−1) + g−k(1−q)

and gk(q−1) − gk(1−q) = −g−k(q−1) + g−k(1−q), it follows that

χ det(x, V
1+q
2

−kW lx) = χ det(x,−V −kW lx) = χ det(x, V kW lx) for l = 0 and 1,

so (ak) and (bk) are symmetric. Since no two of the elements of the set (12) are scalar multiples of each
other, the only zero element of the two sequences is a0. It remains to show these two sequences are
complementary.

Write V kx =
( αk
βk

)
and V kWx =

(
α(1+q)/2+k

β(1+q)/2+k

)
for k = 0, 1, . . . , (q − 1)/2. Note that for each

k ̸= 0, we have βk ̸= 0 and so αk = βkγk for some γk. Since V and W are invertible, each
( αk
βk

)
is

nonzero and so corresponds to some nonzero element of GF(q2). It follows that γk ranges over GF(q)
as k ranges over {1, 2, . . . , q}. This can be seen by observing that if γk = γl for some k ̸= l, then( αk
βk

)
= βk (

γk
1 ) and

( αl
βl

)
= βl (

γk
1 ) are scalar multiples of each other, contrary to what we have

shown.
Fix u ∈ {1, 2, . . . , (q − 1)/2}, and write V −ux = ( υ0υ1 ) . Then, using that det(V u) = 1 and that χ

and det are multiplicative functions, we find that

Ra(u) +Rb(u) =

(q−1)/2∑
k=0

(akak+u + bkbk+u)

=

(q−1)/2∑
k=0

(
χ det(x, V kx)χ det(x, V k+ux) + χ det(x, V kWx)χ det(x, V k+uWx)

)

=

(q−1)/2∑
k=0

(
χ det(x, V kx)χ det(V −ux, V kx) + χ det(x, V kWx)χ det(V −ux, V kWx)

)
= χ det

(
1 1
0 0

)
χ det

(
υ0 1
υ1 0

)
+

q∑
k=1

χ det
(
1 αk

0 βk

)
χ det

(
υ0 αk

υ1 βk

)

=

q∑
k=1

χ det
(
υ0 + υ1αk αk + αkβk

υ1βk β2
k

)

=

q∑
k=1

χ(υ0β
2
k − υ1αkβk)

=

q∑
k=1

χ(β2
k)χ(υ0 − υ1γk)
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=

q∑
k=1

χ(υ0 − υ1γk)

because β2
k is a quadratic residue in GF(q). As k ranges over {1, 2, . . . , q}, we know that γk ranges over

GF(q) and so υ0 − υ1γk also ranges over GF(q) because v1 ̸= 0. We conclude from Proposition 4(i)
that Ra(u) +Rb(u) = 0, as required.

EXAMPLE 12. Let q = 25. Realize GF(252) as the polynomial quotient ring GF(5)[t]/(t4 − t2 −
t+ 2). Then

V =

(
2t3 + 2t2 + 2t− 2 2t3 + 2t2 + 2t− 2

−t3 − t2 − t 2t3 + 2t2 + 2t− 2

)
, W =

(
0 t3 + t2 + t− 2
1 0

)
and

x =

(
1
0

)
, Wx =

(
0
1

)
,

V x =

(
2t3 + 2t2 + 2t− 2

−t3 − t2 − t

)
, V Wx =

(
2t3 + 2t2 + 2t− 2
2t3 + 2t2 + 2t− 2

)
,

V 2x =

(
−t3 − t2 − t− 2
−t3 − t2 − t+ 2

)
, V 2Wx =

(
−t3 − t2 − t− 1
−t3 − t2 − t− 2

)
,

V 3x =

(
−t3 − t2 − t+ 2

−2t3 − 2t2 − 2t− 1

)
, V 3Wx =

(
−2t3 − 2t2 − 2t− 2
−t3 − t2 − t+ 2

)
,

V 4x =

(
−2t3 − 2t2 − 2t+ 1

1

)
, V 4Wx =

(
t3 + t2 + t− 2

−2t3 − 2t2 − 2t+ 1

)
,

V 5x =

(
−2t3 − 2t2 − 2t− 2

t3 + t2 + t+ 2

)
, V 5Wx =

(
−2

−2t3 − 2t2 − 2t− 2

)
,

V 6x =

(
2t3 + 2t2 + 2t+ 1
−t3 − t2 − t− 1

)
, V 6Wx =

(
t3 + t2 + t

2t3 + 2t2 + 2t+ 1

)
,

V 7x =

(
−2t3 − 2t2 − 2t− 1
−t3 − t2 − t− 1

)
, V 7Wx =

(
t3 + t2 + t

−2t3 − 2t2 − 2t− 1

)
,

V 8x =

(
2t3 + 2t2 + 2t+ 2
t3 + t2 + t+ 2

)
, V 8Wx =

(
−2

2t3 + 2t2 + 2t+ 2

)
,

V 9x =

(
2t3 + 2t2 + 2t− 1

1

)
, V 9Wx =

(
t3 + t2 + t− 2

2t3 + 2t2 + 2t− 1

)
,

V 10x =

(
t3 + t2 + t− 2

−2t3 − 2t2 − 2t− 1

)
, V 10Wx =

(
−2t3 − 2t2 − 2t− 2

t3 + t2 + t− 2

)
,

V 11x =

(
t3 + t2 + t+ 2
−t3 − t2 − t+ 2

)
, V 11Wx =

(
−t3 − t2 − t− 1
t3 + t2 + t+ 2

)
,

V 12x =

(
−2t3 − 2t2 − 2t+ 2

−t3 − t2 − t

)
, V 12Wx =

(
2t3 + 2t2 + 2t− 2
−2t3 − 2t2 − 2t+ 2

)
.

The symmetric length 13 sequences defined by (13) are then calculated to be

a = (0−−−+−++−+−−−),

b = (+ +−−−+−−+−−−+).

Note from (1) that for nonzero α ∈ GF(25), we have χ(α) = 1 exactly when α = β2 for some
β ∈ GF(25). We can determine all such α by calculating the squares of those elements β ∈ GF(252)
for which β24 = 1.
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REMARK. (i) It is stated in Theorem 2.3 of Goethals and Seidel [6] that the construction leading
to Result 11 also holds in the case that q ≡ −1 (mod 4). However, Corneil and Mathon noted in
[20, p. 260, footnote] that a nonexistence result for a particular parameter family of strongly regular
graphs due to Bussemaker et al. [1] shows this to be false. We note here, however, that the failure of the
construction for q ≡ −1 (mod 4) follows more simply by observing the form (11). Taking k = (1+q)/4,
one has that V

1
4
(1+q)W = g

1
4
(1+q)2I . Therefore, there are two nonzero vectors in the set (12) that are

scalar multiples of each other, and the construction fails.
For a corrected construction in the case that q ≡ −1 (mod 4), see de Launey [2] which considers

the linear maps α 7→ g2α and α 7→ gαq; see the monograph by de Launey and Flannery [3, chap. 18]
for more discussion. In this case, in order to construct the desired pairs of ternary sequences one must
consider the negaperiodic autocorrelations; see Seberry [18, chap. 4] for the relevant definitions.

(ii) Turyn [25] constructed ternary sequences having the same properties stated in Result 11, but
instead considered the maps α 7→ g4α and α 7→ g

1+q
2 α. It appears that the construction due to Goethals

and Seidel [6] predates that of Turyn’s. See Hall [8, sec. 14.3] for a full discussion of Turyn’s construc-
tion.

(iii) A further construction of sequences satisfying Result 11, subsequent to the work of Goethals
and Seidel [6] and Turyn [25], was given by Whiteman [27] using the field trace of a quadratic extension.

Proof of Proposition 9

We now are ready to provide the proof of Proposition 9.
Suppose p is an odd prime for which q = 2p−1 is a prime power. Since q ≡ 1 (mod 4), by Result 11

there are symmetric complementary ternary sequences a = (ak) and b = (bk) of length p for which the
only zero element is a0. Define length 2p binary sequences w = (wk) and x = (xk) by

wk =

{
1 for k ∈ {0, p},
(−1)kak mod p for 0 < k < 2p and k ̸= p,

(14)

xk = (−1)kbk mod p for 0 ≦ k < 2p. (15)

The symmetry of a and b implies that of w and x, so we need only prove (7).
Consider firstly the sequence x. For 0 < u < 2p, we have

Rx(u) =

2p−1∑
k=0

xkx(k+u) mod 2p

=

2p−1∑
k=0

(−1)kbk mod p(−1)k+ub(k+u) mod p

= 2(−1)u
p−1∑
k=0

bkb(k+u) mod p

= 2(−1)uRb(u mod p).

Now consider the sequence w. Since a0 = 0, we have

Rw(p) =

2p−1∑
k=0

wkw(k+p) mod 2p

= w0wp + wpw0 +

2p−1∑
k=0

k ̸∈{0, p}

wkw(k+p) mod 2p

= 1 + 1 +

2p−1∑
k=0

(−1)kak mod p(−1)k+pa(k+p) mod p

10



= 2 + 2(−1)p
p−1∑
k=0

a2k

= 4− 2p.

For 0 < u < 2p and u ̸= p, using a0 = 0 again we have

Rw(u) =

2p−1∑
k=0

wkw(k+u) mod 2p

= w0wu + w(p−u) mod 2pwp + wpw(p+u) mod 2p + w2p−uw0

+

2p−1∑
k=0

k ̸∈{0, (p−u) mod 2p, p, 2p−u}

wkw(k+u) mod 2p

= (−1)uau mod p + (−1)p−ua(−u) mod p + (−1)p+uau mod p + (−1)−ua(−u) mod p

+

2p−1∑
k=0

(−1)kak mod p(−1)k+ua(k+u) mod p

= 2(−1)uRa(u mod p).

Combining results, we find that

Rw(p) +Rx(p) = (4− 2p) + 2(−1)pp = 4− 4p

and that, for 0 < u < 2p and u ̸= p,

Rw(u) +Rx(u) = 2(−1)u
(
Ra(u mod p) +Rb(u mod p)

)
= 0

because a, b are complementary. This establishes (7) and so completes the proof of Proposition 9.

EXAMPLE 13. Let p = 13. Apply the construction of Proposition 9 to the sequences a and b of
Example 12 to obtain the symmetric binary length 26 sequences

w = (+ +−++++−−−−+−+−+−−−−++++−+),

x = (+−−+−−−+++−++−++−+++−−−+−−).

Proof of Proposition 10

The proof is similar to that for the sequence w in the proof of Proposition 9 and so is abbreviated. Let p
be an odd prime and define the ternary sequence c = (ck) of length p by

ck = χ(k),

where the function χ is given in (1) with q = p. Then the only zero element of c is c0, and by Proposi-
tion 4(ii) we have

Rc(u) =

{
p− 1 for u = 0,

−1 for 0 < u < p.

Define the length 2p binary sequence y = (yk) by

yk =


1 for k = 0,
−1 for k = p,
ck mod p for 0 < k < 2p and k ̸= p.

(16)

11



Then

Ry(p) = y0yp + ypy0 +

2p−1∑
k=0

k ̸∈{0,p}

yky(k+p) mod 2p

= −1− 1 + 2

p−1∑
k=0

c2k

= 2p− 4,

and for 0 < u < 2p and u ̸= p we have

Ry(u) = yu − y(p−u) mod 2p − y(p+u) mod 2p + y2p−u +

2p−1∑
k=0

ck mod pc(k+u) mod p

= cu mod p − c(−u) mod p − cu mod p + c(−u) mod p + 2Rc(u mod p)

= −2,

as required. This completes the proof of Proposition 10.

EXAMPLE 14. Let p = 13. Apply the construction of Proposition 10 to the ternary sequence

c = (0 +−++−−−−++−+)

to obtain the binary length 26 sequence

y = (+ +−++−−−−++−+−+−++−−−−++−+).

(This sequence y is symmetric because p ≡ 1 (mod 4).) Let w, x be the length 26 binary sequences
constructed in Example 13. As noted after Proposition 10, the binary sequence y and the quaternary
sequence

G (w, x) = (+ i −+ i i i j j j −+ j i j +− j j j i i i +− i )

together form a quaternary Legendre pair of length 26.

REMARK. Recall that Theorem 3 is proved using a sequence pair
(
G (w, x), y

)
(see (9)), where the

quaternary sequence G (w, x) is constructed via Proposition 9 and the binary sequence y is constructed
via Proposition 10. Kotsireas and Winterhof [11] found examples of quaternary Legendre pairs for
lengths 38, 62, 74, and 82 in the following way (each of these lengths being covered by the construction
of Theorem 3). Let p be an odd prime. Seek a quaternary length 2p sequence a = (ak) computationally
which satisfies

ak + ak+p =

{
1 + i for k = 0,

0 for 0 < k < p,
(17)

and which forms a Legendre pair with the same binary sequence y as specified in (16).
We now show that the sequence a = (ak) = G (w, x) constructed via Proposition 9 satisfies condi-

tion (17), so we can regard Theorem 3 as realizing the construction procedure proposed in [11] for all
odd primes p for which 2p−1 is a prime power and so removing the necessity for computational search.
By the definition (3) of the map G we have

ak + ak+p =
1

2
(1 + i)(wk + wk+p) +

1

2
(1 + j)(xk + xk+p) for 0 ≦ k < p.

Using the definition of w and x given in (14) and (15), we calculate

a0 + ap =
1

2
(1 + i)(1 + 1) +

1

2
(1 + j)(1− 1) = 1 + i,

12



and
ak + ak+p =

1

2
(1 + i)(wk − wk) +

1

2
(1 + j)(xk − xk) = 0 for 0 < k < p,

so condition (17) is satisfied.

Table 2 lists examples of even length quaternary Legendre pairs of length at most 40 obtained from
Theorem 3.

TABLE 2 . Quaternary Legendre pairs of even length N ≤ 40 from Theorem 3

N Sequence Pair

6 (+ +− i −+)
(+ +−−+−)

10 (+ + i j − i − j i+)
(+ +−−+−+−−+)

14 (+−− i j ++ i ++ j i −−)
(+ + +−+−−−++−+−−)

26 (+ i −+ i i i j j j −+ j i j +− j j j i i i +− i )
(+ +−++−−−−++−+−+−++−−−−++−+)

38 (+ i i − i − j j i +− j i i + j + j j i j j + j + i i j −+ i j j − i − i i )
(+ +−−++++−+−+−−−−++−−+−−++++−+−+−−−−++−)

5. Open Cases

Theorem 2 provides a quaternary Legendre pair for each of these even lengths at most 100:

2, 4, 6, 8, 12, 14, 18, 20, 24, 26, 30, 36, 40, 44, 48, 50, 54, 56, 60, 62, 68, 74, 78, 84, 86, 90, 96, 98.

Theorem 3 provides a quaternary Legendre pair for each of these even lengths at most 100:

4, 6, 10, 14, 26, 38, 62, 74, 82.

Examples for lengths 16, 22, 28, 32, 34 were given in [11, 13]. The unresolved cases of Conjecture 1 of
length at most 100 are therefore now

42, 46, 52, 58, 64, 66, 70, 72, 76, 80, 88, 92, 94, 100.
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